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A QUADRATIC-FORM ANALYSIS OF THE
COLLISIONLESS TEARING MODE

I. INTRODUCTION

The properties of the collisionless tearing instability in the neutral

sheet geometry have been studied extensively.1- 6  A physical system in

which the instability may be particularly relevant is the earth's

magnetotail. 7,10 '1 3 ,14 In its classic form 1-3, the inertia of the current

carriers leads to the instability. The equations to describe the linear

behavior of the instability can be derived using the standard method of

characteristics. This yields integro-differential equations for the

perturbed quantities. In principle, the solution to these equations gives

a complete description of the linear collisionless tearing instability. In

practice, however, the equations are difficult to solve because evaluation

of complicated orbit integrals is required. Thus, the majority of previous

theoretical works have attempted to extract useful information without

evaluating the orbit integrals exactly. These methods include energy

principles, 3,6,8 the use of approximate orbits, 3,5,7,9,13,14 and

expansion of orbit integrals in velocity moments.1
0

However, as the physical system of interest becomes more complex, the

approximate methods of evaluating the orbit integrals may become untenable.

For example, if ions have an anisotropic bi-Maxwellian distribution with an

isotropic electron distribution, then the large ion orbit contribution to

the instability Is significant. 1 3 In this case, the neutral sheet has to

be treated by a 3-region (as opposed to the conventional 2-region) matching
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technique. The straight-line orbit and constant-* approximations limit the

validity to relatively small ion anisotropy TI/T1  < 1.5. If the

distribution function is highly non-Maxwellian, then these approximations

completely break down and the full integro-differential equations must be

solved. In the problem treated by Holdren 17, the equilibrium orbits and

orbit integrals for a relativistic neutral sheet were numerically

calculated using discretized variables. The integro-differential equation

for the perturbed vector potential was then solved using an iterative

scheme and the required numerics were substantial. More recently, Chen and

Lee 15 provided an integro-differential treatment of collisionless tearing

instability in a highly non-Maxwellian neutral sheet. In this work, the

exact unperturbed particle orbits were used analytically in the orbit

integrals. Using the Galerkin method,18 the integro-differential equation

for the perturbed vector potential was converted into a finite dimensional

matrix and solved to obtain the dispersion relation and the eigenmode

structure. It was found that the eigenmode is strongly localized to a

region of the order of (Pex p) 1/2 at the null plane and that the eigenmode

is highly structured in this region, where pe is the electron Larmor radius

in the asymptotic magnetic field and xp is the neutral sheet half-

thickness. For kllBo, the dispersion relation was found to have the general

form y/kvelI ' (pe /x p)D where D is a function of temperatures only and Vell

is the electron thermal velocity along B 0, the equilibrium magnetic field.

For this problem, the usual straight-line orbit and constant-*

approximations would indeed have been invalid. Another point of interest

to note is that the contribution to the perturbed current density Jly(x) at

a given point x primarily comes from those axis-crossing orbits with

turning points at x. It is easier to calculate such contribution

accurately using analytic orbits than using discretized variables.

2
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In Ref. 15, due to the relative simplicity of the geometry, the orbit

integrals and matrix elements could be calculated independently of k and W.

Thus, only minimal numerical calculations were required. However, in more

complex systems, the required computation may be more substantial, i.e.,

the matrix elements may have to be evaluated for each iteration for

different values of w/kv to determine the dispersion relation. In such

cases, it would be desirable to determine some overall stability properties

without extensive computation. In addition, if unstable, it would be

desirable to determine the lower and upper bounds for the growth rate.

Such considerations have led to formulation of various energy principle

methods. For example, for ideal MHD, the energy principle method1 9 seeks

to determine the stability of a magnetized plasma by considering the

potential energy associated with perturbations of an equilibrium. For the

collisionless tearing mode, a number of energy principle analyses have been

performed.3'6'8 These methods generally provide the sufficient condition

for stability. In these works, approximate orbit integrals are used, or in

certain simple cases, no orbit integral is needed.8  If, however, no valid

approximations are available for the necessary orbit integrals, then these

methods do not yield accurate results or estimates of growth rates.

In this paper, we consider another method which is analogous to energy

principle methods but which is more versatile. In the present method, we

evaluate the orbit integrals using the exact equilibrium orbits and no

trial functions are used. It generally yields a sufficient condition with

a lower and upper bounds for the growth rate for unstable systems.

However, the method can also be iterated to give accurate growth rates for

the unstable modes and the eigenfunctions.

The method depends on certain general features of the eigenmodes. One

important feature is that the eigenmodes are generally well localized. The

technique is potentially applicable to a wide variety of systems. The

%1i
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basic ideas are simple and we first describe the method. The objective of

this paper is to provide a rigorous theoretical basis for the method. For

this purpose, we prove a number of general properties of the quadratic form

based on a self-adjoint integro-differential operator. We then illustrate

the technique by applying it to the collisionless tearing mode in a highly

non-Maxvellian neutral sheet that has been solved previously.

II. A Quadratic Form Formulation

In this section, we present the formalism for a quadratic-form method

for treating the collisionless tearing instabilities. We first describe

the general framework and then provide a specific application. For the

sake of concreteness, we will use a neutral sheet geometry. The method can

be applied to other configurations.

Figure 1 shows the magnetic field and the coordinate system. The

equilibrium magnetic field is given by Bo (x) = B z(x) z with Bz (-x) = -B(x)

and B. = 0 at x = 0. The current density is J0 (x) = Jo(X)W with J0 (-x) =

J (x). Because of pressure balance, the particle density no (x) and current

density J0 (x) are peaked about x = 0 with a characteristic half-thickness

of xp. For lxi > Xp, Bz is nearly constant and the current density is much

smaller than for lxi < x p. The tearing instability in a neutral sheet can

be described by perturbations of the form *(x,z,t) = *(x)exp(ikz - iwt),

where the wave vector k = k z is taken to be parallel to the equilibrium

magnetic field. We assume that all perturbations vanish as t 4 --. In

this paper, we will neglect the scalar potential. The inclusion of the

scalar potential gives rise to another coupled integro-differential

equation whose basic character is similar to that of the equation to be

treated here. Thus, the present method can be generalized to include the

scalar potential in a straightforward manner. In reality, the neglect of

the scalar potential implies that high perturbation frequencies (oJw > oci)

4



cannot be treated adequately, where oci is the ion cyclotron frequency in

the asymptotic magnetic field.

The Ampere's law gives

dx2

where the perturbed vector potential is A1  X *(xzt)y and Jly is the

perturbed current density. It is in evaluating Jly that one must evaluate

orbit-integrals. These integrals may be regarded as linear operators

acting on *. Thus we can re-write Eq. (1) as

L* = 0, (2)

where L is an integro-differential operator to be determined for each

specific problem. We can also define a quadratic form I by

I(0I) a J dx+*(x)L*(x) , (3)

where +* is the complex conjugate of *. It is clear that Eq. (2) can be rr

recovered by the variational principle requirement 8I(,*I) = 0, which

automatically implies I(*I*) = 0. If we let #m be an eigenfunction of L

corresponding to the eigenvalue Xm, then we can write

m m

d*m 2 (4)
= J dxjI -k + dx #C*.,(4



where E is the linear operator describing the orbit integrals. Here, we

have used +m 4 0 as lxi 4 - and assumed +m to be normalized to unity. Note

that the eignevalues depend on k and & and that they are primarily

determined by the first and third terms of the above equation. However,

Eq. (2) can also be thought of as an eigenvalue equation L*(x) = X*(x),

where X = X(k, &). Equation (2) is then equivalent to setting X = 0.

Thus, the dispersion relation can be obtained from

X(k, 0) = 0. (5)

In this paper, we will prove a number of mathematical properties of the

eigenvalues Xm and the integro-differential equation. These properties

will be used in a method to determine the stability condition for a given

system with respect to the tearing mode. It is an objective of this paper

to provide a sound theoretical basis for the method and to illustrate the

application.

Following the treatment of Ref. 15, we use an equilibrium distribution

function of the form Fi  = FLj(H 1 j - VjPyj)Fgj(H ,j), where j = e, i and

(HJJPyj, H j) are the single-particle constants of motion. Here, Hij =

(mj /2)(vx + vy2  Pyj = mjvy + (qj/c)A0 (x) where A0(x) is the equilibrium
2

vector and H11j = (mj/2) v2. For simplicity, we will choose F to be

Maxwellian with

F =1j(H = ( 2 nT11/mj) 1/2exp(-H11/T11). (6)
:1

For the species J, mj is the mass, qj is the charge and Vj is the mean

drift velocity in the y direction. In the remainder of the paper, we will

omit the species index j when no confusion results. Then, it can be

6



shown1 5 that the left-hand side of Eq. (1) can be written as an integro-

differential operator L given by

dx2 4 i 3 - FiH

L dx 1  "K(XX + K 2 (xx)) y -) . (7)

J mj c Ii

Here, the kernels are given by

dv (x v , (x)
K I(Xn ,) , L(bn)FL eVx(iX)V'-t' )  (8

and

, ,

F (x)v x) ' (
K2(XX) = nE d b(1 + n ... n exp-inQ(t-t') (9)n~L°) JTHLPy kJ1 8 V x(X)V x (X)

where the orbital period is given by

r dx
T(HvL , P y) IV iX (10)

and

b a ((o + nQ)/kv 

%

n ji'

Here, the integration Is carried out over one complete cycle. The
I I

coordinates (x , v ) represent the particle orbits in the equilibrium field
I f I F

with the conditions x (t = t) = x and v (t = t) = v. The dispersion

functions are given by

112 f 2
Z(EM) = ft

-  dt exp(-t2)t -

-00
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and
() +1 +W .

In the above expressions, vjlI is the thermal velocity of the species j

associated with the motion parallel to the equilibrium magnetic field. In

deriving Eqs. (7), (8) and (9), we have used

vx(x)1 (x ) = . *n (x)exp [inQ(t - t )j (11)

n=O

with
p.

T

0(X) N dt[v (x )*(x )Jexp[-inQ(t - x)] (12) '4n T fo x

where T T(H, P and
y

= 2n/T(H i, Py)I

with the orbital period T given by Eq. (10).

In writing Eq. (11), use has been made of the fact that an equilibrium

orbit can be thought of as a function of the present coordinates at t = t.

The kernels K1 and K2  generally must be evaluated numerically. However,

there is no need to follow equilibrium orbits. The velocity components can 5

be evaluated analytically as functions of HI and P . In doing the velocity
y

space integration, all the equilibrium orbits are included exactly.
It is easy to see that the third term on the right hand side of Eq. (7)

is the so-called adiabatic term. The third and fourth terms combined give

the perturbed current density. In deriving Eqs. (8) and (9), we have

5[l l1 1
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included all harmonics of the orbital periods. However, the conventional

tearing mode corresponds to the n = 0 case. In this paper, we will also

set n = 0 henceforth for simplicity and restrict ourselves to the purely

growing mode, u = iy.

III. A Non-Maxwellian Neutral Sheet

If we set n = 0 and w = iy, the operator L is self-adjoint since it is

real and symmetric in x and x Then, its eigenvalues are real and

eigenfunctions can be chosen to be real and orthonormal without loss of

generality. Let +m(x) be such an eigenfunction with the eigenvalue Xm m

Then,

~~mI m m

2 k2 4ne2 2  3 F i
=- dx - k + --- Ea dx+m(x) aF 1

+ Jdxdx*(x)[ K (Xx) + K.2 (x-x)](x), (13)

c m 2c T~ 1m
J J

where we have used + 0 as lxi 4 j . Note that the dependence on m

occurs only through the eigenfunctions +m"

We will demonstrate the following properties. We will first show that

the eigenvalue Xm increases without bounds as y approaches -- for all m and

k. Then, we will show that Xm  approaches an asumptotic value for each k

and m as y approaches +- and that the asymptotic values are bounded from

above but not from below. We then prove that, for any finite value of y,

there exist only a finite number of m values for which Xm is positive.

9



We now prove that Xm 4 + c for all m as y 4 - *. First, we consider an

analytic continuation of Eq. (13) to y < 0. The first three terms of Eq.

(13) have no explicit dependence on y. Equation (9) shows that the K2 term

also has no y dependence if n = 0. Equation (8) shows that K1 depends on y

through the dispersion function W. For large negative y, we have the

asymptotic expression

W07--)-- 2n 1/2 exp(y2).

Therefore, as y 4 --, we have W 4 + . In addition, K1 can be re-written

as

Kl (x,x = W(bO ) P T-dH UdX+ (x) v (x) 2

where b = o*/kv Since T is positive definite, the integral is positive
0 Jtl.

definite. Thus, we see Kl(x,x ) + in the limit y 4 - . Because all

other terms in Eq. (13) are independent of y, we conclude that

lim X = + (14)
Y4Wm

for all m. In the other limit y 4 + , we see that Z(b0 ) 4 0 and W(b)

+1 so that, for a given k, X m reaches an asymptotic value for each m. In

practice, the dependence of y/kv becomes unimportant for y/kv > 4 where

Z(41) 0.1. The large-y asymptotic expression for X m then becomes

) m~- fd d) 2 - k2 + -4 e  fdx+ fd3Vy vv

Xm -0dx i - y 8

10



+ E 1 J. [dx v m 1

PYdH aF (x)2 (15)
+ 4n 2 Jd-f-Ta [fUdxv (15c I xj m

It is clear that the asymptotic values of Xm may be positive or negative.

It is of interest to note that if F1 and aF1/aH1 are integrable at least in

the 6-function sense, then the asymptotic values of Xm are bounded from

above. However, they need not be bounded from below since it is possible

to make the integral of (d+m/dx)2 arbitrarily large by introducing

"wiggles". Since lim X +m for all m, and m can be negative for some m

as y + -, it is clear that some eigenvalues must cross zero. If the

zero-crossings occur for y > 0, then the eigenfunctions corresponding to X

= 0 provide the solutions to the tearing mode equation (2). The values of

y where the crossings occur are the corresponding growth rates.

We now demonstrate an important property that for any finite y,

negative or positive, there are only finitely many positive eigenvalues XM.

For any given k and a finite y, it is easy to see that only the first term

of Eq. (13) can be infinite. Thus, it is sufficient to show that there are

only finitely many m's for which the quantity fdx(dIm/dx)2 is finite.

Let (uk(X)) be a complete set of basis functions. Then, we can write

4m(x) = E amkuk(x). (16)

k= 1

It is important to consider the nature of the eigenfunctions. We note that

Eq. (1) can be cast in the form of a Schroedinger equation with -k2 playing

the role of the energy of a particle in a potential well -(4 n/c)Jly. For

g--.



the tearing mode problem at hand, the perturbed current is sharply peaked

at the magnetic null plane (x = 0). Thus, we seek bound state solutions of

Eq. (1) localized around x = 0. As a general remark, we note that the

equilibrium distributions are such that the current and particle densities

are localized near x = 0 with a characteristic half-thickness x asP

discussed earlier. Then, in the operator L, only the first two terms are

important [Eq. (7)]. For lxi >> xp, the current density is essentially

zero and the perturbed eigenfunction vanishes exponentially. As a simple
15

model with these features, we use

F1j = (mn0 o/2n) (H - VjPy - T j)

where V and T are constants and no = no(O). This distribution is such

that n0 (x) and Jo(x) are constant for Ixi < xp and zero for Ixi > xp for

each species, where

2  mv2 + 2TI

p 4nen 0 (Vi - Ve)(qVj)/c

Here, q is the charge of the species. For this distribution function, Eq.

(1) can be solved exactly outside the plasma sheet (jxj > x p) to give

* = (x p)expl-k(lxl-x ].

Thus, we can write

#m 2 .x PA,*2 2J dx~) ra Jdx dx~± + k+(x ).

p
We define

d • dxA (17)

-x
p

12I



Then, Xm is finite if and only if Rm is finite. For simplicity, we treat

#m as if it were entirely confined in the region (-xp X ). Then, the

Fourier components for even + are simply
U

Uk(x) - d-1 /2 Cos (nJr (18)

Substituting Eq. (18) into Eq. (17), we obtain

R- ( ) k2amk2. (19)

k-i

The orthonormality of the eigenfunctions #m requires

a2 , (20)
kl

k-i

for all m. In addition, ye have

2iamk , (21)

Mr-i

for all k. This can be seen by noting that the matrix A a (aij) is such

that AT - I from the orthonormality of eigenfunctions +m" Since A is a

square matrix, AT is the inverse of A, i.e., A is an orthogonal matrix.

Then, Eq. (21) follows. From Eqs. (19) and (20), we see Rm > (n/d)
2 for

all m with R. M (n/d)2 if and only if a ml f 1 and amk = 0 for all k 0 1.

We nov prove that there exist only finitely many m for which Rm is

finite. Consider a set S of all finite R . Define the following

quantities

N N
RN k2a 2

Rm a mk
k=l

13



and

ON k k2a mk
2,

k=N+

S= Because the sequenceR N converges to R as N 4sota m  m +  N" Bcue hesuneR m  m ®

ve see that for any Rm c S and any arbitrary C > 0, there exists a finite
integer Nm such that 0N < C for all N > Nm . Nov, consider a finite subset

SM of S such that SM has H elements. Let <Rm>M be the average value of the

elements of S M * Then, by denoting the elements of SM by m = 1,... M, ve

have

M

<Rm>M = Rm
m=1

H N M

1 E 2a 2 E 0kamk + ff N"

m=l k=1 m=1

Here, for any c > 0, N is chosen such that 0N is less than v for all Rm in

SM. Interchanging m- and k- summations and summing over m to infinity, ve

obtain

N Co

<Rm>M < 1 E k 2 E ak 2 +<QN>

k=1 m=1

vhere <QN>M is the average over SM.  Then, using Eq. (21) and carrying out

the k-summation, we have

1 N(N-2)(2N-1) N<Rm>M < N 6+ <0N>H  (22)
mR.M <H 6NM

14



for all R in S . Clearly for any v, it is easy to show <QN > < c by

induction. We can choose e < (Vid) 2. Nov, we suppose S has infinitely

many elements. Then, we can take the limit H -. Recall that Rm > (n/d)
2

for all m.

Therefore, lim <Rm>H (n/d)2 . However, the inequality (22) shows that

lim <RM> M < <0 N > < c < (n/d) 2

H

This is a contradiction due to the supposition that M is infinite.

Therefore, S cannot have infinitely many elements.

The properties of Xm described above suggest a practical method for

assessing stability of a neutral sheet when detailed computation is time-

consuming. First, compute the positive eigenvalue spectrum at y - 0.

Suppose there are n, positive eigenvalues. Next, compute the positive

eigenvalue spectrum at a large y - y2 with n2 positive eignevalues. If n1

and n2 are not equal, then there are at least In2 -nl[ values of y > 0 for

which Eq. (2) is satisfied. That is, there are at least In2 - nl[ unstable

modes. This method would be particularly useful when evaluation of kernels

for each value of k and w is numerically prohibitive. In cases where some

numerical computation is still practical, the above procedure can be

iterated by considering successively smaller intervals Ay m (Y2 - yd)

From Eqs. (3) and (17), we see that there can be only a finite number of m

such that Xm is finite for finite y. In particular, there can be only

finitely many positive Xm for y = 0. There are infinitely many m such that

XmIs cross zero for y < 0. That is, there are infinitely many stable modes .

and only a finite number of stable modes. It is also clear that if the

dimensionality of the matrix is large enough, the values of the positive

eigenvalues are not significantly affected by the dimensionality of the

matrix. That is, we only need to solve a finite dimensional eigenvalue

15



equation. Thus, Eq. (2) can be reduced to a finite dimensional matrix

equation to find all the unstable modes, if the system is unstable. If ay

can be made sufficiently small, then we obtain the growth rate and the

eigenmode structure accurately.

IV. Summary and Discussion

We have described a quadratic-form method which may be useful for

studying the linear collisionless tearing mode stability of a neutral sheet

in cases where the complicated orbit integrals make it impractical to

calculate the eigenmode structures. We have provided the necessary

mathematical justification. This method may be iterated, where practical,

to provide a necessary and sufficient condition regarding the stability of

a complicated system and, if unstable, the growth rates.

In this paper, we have used a mathematically tractable distribution

function. However, the basic conclusions of the paper are not limited to

the idealized model. In the example given above, the kernels K1 and K2

depend on the standard dispersion functions Z and V because of the

Maxwellian distribution in H 1. As a result, the asymptotic behavior of KI

and K2 for v 4 ± - can be determined readily. Similar asymptotic behavior

occurs in other systems in which the distribution functions are not

Maxvellian in H 1. It has been shown that the behavior of the eigenvalues

Xm is determined by the quantity Rm [Eq. (17)]. We have shown that Rm is

finite only for a finite number of m. This behavior is due to the fact

that eigenfunctions 4m are localizable to a finite region, which in this

case, is the magnetic null region. Thus, the properties of I(+mi+m) which

are necessary for the method can be generalized to a wide variety of

systems. We expect that the present quadratic-form technique can be used

to analyze more realistic physical systems. In this paper, we have shown

how the necessary properties must be assessed for application to a given

system.

16
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